

IPS-DTASeries 0.5KVA-15KVA**

Pure Sine Wave Inverter

User Manual

GUANGZHOU IDEALPLUSING INFORMATION TECHNOLOGY CO., LTD

Add: Building 1, NO.38 Gaopu Road, Tianhe, Guangzhou, Guangdong Province, China. 510520. Tel: +86-20-89282095 Mobile & Whatsapp: +86-15989132799 QQ: 2274914457 Website: <u>www.idealplusing.com</u> E-MAIL: <u>info@idealplusing.com</u>

PREAMBLE

IPS-DTA sereis pure sine wave inverter equipment is a conversion device that converts mains power and DC power into uninterrupted and purified AC power, and provides continuous AC power for computers and other electrical equipment to prevent instability and interruption of mains power. Electricity.

TECHNICAL CHARACTERISTICS OF INVERTER POWER SUPPLY:

1	CPU control, simple and reliable circuit
2	Using SPWM pulse width modulation technology, the output is a pure sine wave with stable frequency and
2	voltage, noise filtering, and low distortion
2	Built-in bypass switch, fast switching between mains and inverter, can choose mains power supply or DC
3	power supply, selected by dial switch
4	The front panel of the inverter has LCD or LED display mode, and the status is clear at a glance
5	Completely isolated inverter technology, output noiseless pure sinusoidal AC voltage
	It is allowed to cut off the DC in the power-on state, and the machine automatically switches to the mains
6	bypass without affecting the power supply of the load, which is convenient for maintenance and replacement
	of the battery
	Mains main supply type and battery main supply type: DIP switch can be selected
	A) main supply type of mains: when there is mains, it is in the output of mains, and it will automatically switch
7	to inverter output when the input of mains fails;
	B) Battery main supply type: when there is mains power, it is in the inverter output, and it will automatically
	switch to the mains output when the DC input fails;
	In DC main supply mode, if the battery or DC voltage is too high or too low, the DC inverter will automatically
8	shut down and switch to the bypass output. If the battery voltage returns to normal, the power supply will
	automatically restore the inverter output
	In DC main supply mode, if the load is overloaded, the DC inverter will automatically shut down, and
9	automatically switch to bypass output. After 60 seconds after the overload is eliminated, the power supply will
	automatically restore the DC power supply output
1	Support RS485 communication function. Use the monitoring software to understand the working conditions of
0	the power supply in real time
1	Three sets of passive dry nodes are provided, which are respectively used for DC faults, inverter faults, and
1	mains faults
1	Support no DC power-on function, and can run in the state of only mains power. This function allows the
2	inverter power supply to be put into use first, and then the battery is installed

PRECAUTIONS

This manual allows you to easily operate and maintain the system. In order to make the system function normally, please pay attention to the following items:

1	Be sure to read this manual carefully before use
2	Follow the instructions and operate according to the law. It is strictly forbidden to reverse the DC input or
	connect the AC input to the AC output
3	Handle with care when moving the machine
4	Please follow the instructions for power supply construction
5	In order to avoid personal injury and machine damage caused by electric shock, there must be a complete
	grounding system
6	Avoid overloading, so as not to cause machine failure

Warning!

The output of the inverter power supply cannot be used in parallel or grid-connected, otherwise the machine will be damaged.

Disclaimer:

Due to the continuous update and improvement of products and technologies, the content of this document may not be completely consistent with the actual product, please understand, if you need to know about product updates, please contact the manufacturer.

Table of contents

I. INTR	ODUCTION OF PURE SINE WAVE INVERTER					
NO	Describe	Page No				
1.1	General description	P4				
1.2	Series model description	P4				
1.3	Customized Range	P4				
1.4	LCD 1U panel function introduction	P4				
1.5	LCD 1U panel function introduction	P6				
1.6	LCD 2-4U panel function introduction	P7				
II. TYPI	CAL APPLICATION					
NO	Describe	Page No				
2.1	Working principle diagram of inverter power supply	P9				
2.2	System working principle	P9				
2.2.1	Mains bypass	P9				
2.2.2	Inverter mode	P9				
III. INS	III. INSTALLATION AND OPERATION					
NO	Describe	Page No				
3.1	Receiving	P10				
3.2	Storage	P10				
3.3	Preparation before installation P10					
3.3.1	Check the nameplate of the machine	P10				
3.3.2	Mounting accessories	P10				
3.3.3	Confirm installation conditions	P10				
3.4	Connecting wires	P11				
3.5	Appearance dimension drawing: mm, error ±1mm	P15				
3.6	Running P15					
IV. MA	INTENANCE AND AFTER-SALES					
NO	Describe	Page No				
4.1	Maintenance	P15				
4.2	Accessories P15					
4.3	Led And Buzzer Combination Status Table	P16				
4.4	Common Fault Analysis Table of Inverter	P16				
V. QUA	LITY ASSURANCE CARD	P17				

I. INTRODUCTION OF PURE SINE WAVE INVERTER

1.1 GENERAL DESCRIPTION

The pure sine wave inverter is specially designed for electricity and communication systems. It is a conversion device that converts electricity from the mains city ac voltage or batteries' dc voltage to a continuous and purified AC power applied for computers and other electrical equipment. To prepare for the instability of the city's electricity and power cuts. It also prevents various distortions of utility power, such as power supply voltage drop, surge voltage, spike voltage, and broadcast frequency interference.

1.2 SERIES MODEL DESCRIPTION

<u>IPS-DTA XXXX -YY</u>

- IPS--- IDEALPLUSING(IPS) Group
- DTA---DC to AC
- XXXX---- Rate capacity of inverter
- YY---Input Voltage

For example, IPS-DTA2000-48 Means 48VDC to 220Vac 2000V Inverter

1 0	CLICT/		DANCE
1.3	CO210	JIVIIZED	RANGE

220VAC OUTPUT DESIGN						
Model	Input DC	Input Bapass AC	Output AC	Capacity		
IPS-DTAXXXX-24	24VDC	220/230/240VAC	220/230/240VAC	0.5-5KVA		
IPS-DTAXXXX-48	48VDC	220/230/240VAC	220/230/240VAC	0.5-10KVA		
IPS-DTAXXXX-110	110VDC	220/230/240VAC	220/230/240VAC	0.5-15KVA		
IPS-DTAXXXX-125	125VDC	220/230/240VAC	220/230/240VAC	0.5-15KVA		
IPS-DTAXXXX-220	220VDC	220/230/240VAC	220/230/240VAC	0.5-15KVA		
120VAC OUTPUT DESIGN						
Model	Input DC	Input Bapass AC	Output AC	Capacity		
IPS-DTAXXXX-24	24VDC	110/120/130VAC	110/120/130VAC	0.5-5KVA		
IPS-DTAXXXX-48	48VDC	110/120/130VAC	110/120/130VAC	0.5-8KVA		
IPS-DTAXXXX-110	110VDC	110/120/130VAC	110/120/130VAC	0.5-8KVA		
IPS-DTAXXXX-125	125VDC	110/120/130VAC	110/120/130VAC	0.5-8KVA		
IPS-DTAXXXX-220	220VDC	110/120/130VAC	110/120/130VAC	0.5-8KVA		

SPECIFICATION

Table 1

4K 0.5K 1K 2K ЗK 5K 6K 8K 10K 12K 15K Rate input Table 2 Voltage/Vdc Rate input Current/A Table 2 DC Input Input dc range Table 2 Voltage Reverse noise Current ≤10% Allow bypass voltage 110/120/130/220/230/240 VAC (Vac) AC Bypass Rate input current/A 1.8A 3.6A 7.2A 10.8A 14.5A 18.2A 21.8A 29A 36A 44A 55A input Bypass conversion ≤5ms time/ms Rated output 10K 0.5K 1K 2K ЗK 4K 5K 6K 8K 12K 15K Capacity/KVA Rated output 400 800 1600 2400 3200 4000 4800 6400 8000 10000 12000 power/W Rated output voltage 110/120/130/220/230/240 VAC 50Hz/60Hz and frequency Rate output current/A 1.8A 3.6A 7.2A 10.8A 14.5A 18.2A 21.8A 29A 36A 44A 55A Output voltage 110/120/130/220/230/240±3% accuracy/V AC Output Output frequency 50±0.1% or 60±0.1% accuracy/Hz Waveform distortion ≤3% (Linear load) rate (THD) 5% (Load 25%← →100%) **Dynamic Response** Power Factor/PF 0.8 Over load ability ≥100%~125%, 10mins; 125%~150%, 15seconds; 150%, shut down Immediately Efficiency ≥85% (80% Resistive load) Bypass conversion ≤5ms time/ms Insulation strength 1500Vac, 1min (input and output) Noise/1m ≤40dB Operating For LCD: -5°C~+40°C Environmen Operating t temperature For LED: -25℃~+50℃ Humidity 0~90%, no cooling Altitude /m ≤1000 A/B/ Rack Mount А A/B/E С С С С D D D D Dimension Е 20 Weight/Kg 4.8/6 5/6 6/7 12 13 14 15 22 22 22 Input lower voltage, input over-voltage protection; output overload protection, output short circuit Protect function protection

Note: The rated output power with error 500VA±50W; 1-10KVA is ±100W

Table 2

Inverter input DC voltage (Vdc) (Error: +/-0.5~1V)

	12V Se	ries	24V Se	eries	48V Se	ries	110V S	eries	220V S	eries	240V Se	eries
Rate input voltage	12Vdc		24Vdc		48Vdc 110V		'dc 220V		'dc	240Vdc		
working voltage range	9.8~14.5V		20~30.5V		40~58.8V		90~145V		180~270V		200~300V	
Start up /Boot voltage range	10.2~4.2V		21.5~29.5V 42~57V		7V	94~142V		190~265V		210~295V		
	500VA	40A	500VA	20A	500VA	9.8A	500VA	4.3A	500VA	2.2A	500VA	1.9A
	1KVA	76A	1KVA	38A	1KVA	19A	1KVA	8.3A	1KVA	4.2A	1KVA	3.9A
	/	/	2 KVA	76A	2 KVA	38A	2 KVA	16.6A	2 KVA	8.3A	2 KVA	7.8A
	/	1	3 KVA	117 A	3 KVA	57A	3 KVA	24.9A	3 KVA	12.4A	3 KVA	11.7A
	/	1	1	/	4 KVA	77A	4 KVA	33.4A	4 KVA	16.7A	4 KVA	15.6A
Rate input current	1	1	1	/	5 KVA	98A	5 KVA	36.6A	5 KVA	18.3A	5 KVA	19.6A
	1	1	1	/	6 KVA	117A	6 KVA	51.3A	6 KVA	22A	6 KVA	23.5A
	1	1	1	/	8 KVA	156A	8 KVA	68A	8 KVA	34.2A	8 KVA	34.2A
	1	1	1	1	10 KVA	196A	10 KVA	85A	10 KVA	42.7A	10 KVA	39A
	1	1	1	/			12KVA	102A	12KVA	51A	12KVA	47A
	1	1	1	/					15KVA	64A	15KVA	58

Remarks:

Due to the difference in the instrument used during the test, the range points may slightly deviate. The input current size determines the input switch size configuration

Explanation:

In order to protect the battery, the inverter can start normally only when the battery voltage is within the STARTUP/Boot voltage range.

After the inverter is switched on and inverter can work normally within the working voltage range work under the battery or DC power supply mode. When the battery or DC voltage drops to the lower working voltage limit, the inverter will be powered off.

1.4. LED 1U PANEL FUNCTION INTRODUCTION

	- O POW	ER MUTE	 INV BAT LAD TEMP
ltem	Panel	Full name	Definition
1	POWER	Switch	This switch is only used to control the switching of the DC inverter, and does not control the starting of the mains

2	MUTE	"Mute switch" button	When alarming, press the buzzer to turn off
2	LIN	AC City Power	The LIN Indicator ON Mean the inverter work in AC input and ac
3		indicator	output in bypass mode
4	INV	Invert indicator	The INV Indicator ON Means the inverter work in DC input
E	BAT	Patton indicator	The BAT Indicator ON When the battery or DC input voltage is
5		Battery indicator	out the working range of the inverter
6	LAD	Load indicator	The LAD Indicator ON when the inverter fail to work
7	TENAD	Over-temp	The light will come on when the temperature of the machine
1		indicator	itself is too hot, and will go off at other times.

1.5. LCD 1U PANEL FUNCTION INTRODUCTION

1.6 LCD 2-4U PANEL FUNCTION INTRODUCTION

	Output Voltage : XXX.X Vac						
	BEEP PAGE BI	A LIN INV BAT LAD					
LED functions	No. 1						
Utility Light	The utility light is on when there is a u	tility input and it is a utility output in hypass					
Inverter	The inverter light is on when the inver	ter is working when the bypass input is faulty					
Light							
Battery Light	The battery light is on when the battery or DC input voltage is not within the operating						
<i>,</i> 3	range of the machine.						
Load Light	The load light is on when the inverter	has a fault					
Backlight key	function						
1	Press the backlight key once, the back	light lights up					
Mute key fun	ction						
1	When the buzzer is in the beeping s	tate, press and hold for 1~2 seconds to turn off the					
1	buzzer						
2	When in alarm state and the buzzer is	s off, press and hold this key for $1 \sim 2$ seconds to turn					
	on the buzzer						
LCD Turn Pag	le						
1	Page turn key: cycle through the page	s to view the various LCD display parameters					
	The LCD display has six pages (standar	rd models), each page displays two lines of content, as					
	the display is constantly updated, plea	se refer to the actual shipment.					
First Page		Second Page					
Output voltage:		Output frequency: XX.X Hz					
Load capacity: X	XX XX W	Output current: XX.X A					
	: AAA.A Vac	Do input voitage: XXX.X vac					
		Sixth Dago					
Fiveuri Page	r: ¥¥	JIXUI Page Main supply method: XYYY					
	¥XX						
Current alarm: X	XXX						

The content in ALARM indicates: OV L: overload; OV T: over temperature: DC HV: DC over voltage; DC LV: DC under voltage; INV ER: inverter fault BYP HV: utility overvoltage; BYP LV: utility undervoltage; NO: no alarm.

II. TYPICAL APPLICATION

2.1 WORKING PRINCIPLE DIAGRAM OF INVERTER POWER SUPPLY

2.2 SYSTEM WORKING PRINCIPLE

2.2.1 MAINS BYPASS

Utility bypass mode, the utility power is switched to the output via a relay and is supplied directly from the utility bypass. When the mains power fails, it automatically switches to inverter and is powered by battery or DC, ensuring uninterrupted power supply to the equipment.

• AC Mains bypass mode

In the AC mains bypass mode, the mains power is switched to the output via a relay, and the mains bypass directly supplies power. When the main fails, it automatically switches to the inverter and is powered by the battery or DC to ensure uninterrupted power supply to the equipment.

linverter mode

In the inverter mode, after the DC boost inverter is reversed, it is switched to the output via a relay and directly powered by the battery or DC. When the inverter fails, it automatically switches to the bypass and is powered by the mains to ensure the uninterrupted power supply of the equipment.

2.2.2 INVERTER MODE

In inverter mode, the DC step-up inverter is switched to the output via a relay for direct power supply from the battery or DC. When the inverter fails, it automatically switches to the bypass and is powered by the mains, ensuring uninterrupted power supply to the equipment.

WARING: The output of the inverter power supply cannot be used in parallel or in grid connection, otherwise the machine will be damaged!

III. INSTALLATION AND OPERATION

3.1 RECEIVING

Due to possible damage to the machine during transportation, please check the packing of the goods when receiving the goods that the goods company is carrying. In case of any damage, please indicate on the receipt.

3.2 STORAGE

Keep it in a cool, dry, ventilated place away from highly corrosive, dusty, hot, and humid environments. If you do not use the inverter for a long period of time, you should be able to use it every 6months

3.3 PREPARATION BEFORE INSTALLATION

3.3.1 Check if the specification, type, output capacity, input AC voltage, input DC voltage, output AC voltage, etc., meet the contents specified at the time of ordering. Check the machine for damage during transportation.

3.3.2 CONFIRMING INSTALLATION CONDITIONS

- 1. No dust, choose a ventilated, clean installation environment;
- 2. The proper ambient temperature
- 3. Relative humidity meets requirements
- 4. No corrosive gas such as steam
- 5. No flammable and explosive products nearby
- 6. There is a power supply that complies with safety regulations

3.3.3 INSTALLATION ACCESSORIES

When the host is shipped, it is not equipped with rack headphones. The rack headphones are placed in the accessory bag. During installation, the rack is taken out of the accessory bag and then fixed to the left and right sides of the machine using the screws in the accessory bag.

Place the transparent cover and dry contact male terminal of the wiring terminal in the accessory bag.

3.4 CONNECTION LEADS

- 1. Make sure all switches are off.
- 2. Connect the host's DC input cable correctly. Note the positive and negative polarity.
- 3. Connect the host AC input cable correctly.

- 4. Connect the host AC output cable correctly.
- 5. Connect the host to a good ground wire.

3.5 APPEARANCE & DIMENSION

3.5.1 MECHANICAL DRAWINGS

3.5.2 WIRING DIAGRAM DESCRIPTION

1U Rack Mount type

ltem	Name	Definition
1	DC(MODE)	Prefer to use the DC Voltage Input
2	AC(MODE)	Prefer to use the AC bypass Input
3	AC FAIL	AC Input is fault
4	DC fault	DC Input is fault
5	INV fault	Inverter is fault
6	COMM	The common return line of three signal
7	L	The live wire of AC input or AC output
8	Ν	The neutral wire of AC input or AC output
9	E	The ground wire of AC input
10	GND/PG	Protect ground

2U Rack Mount type

ltem	Name	Definition
1	DC(MODE)	Prefer to use the DC Voltage Input
2	AC(MODE)	Prefer to use the AC bypass Input
3	AC FAIL	AC Input is fault
4	DC fault	DC Input is fault
5	INV fault	Inverter is fault
6	COMM	The common return line of three signal
7	L	The live wire of AC input or AC output
8	N	The neutral wire of AC input or AC output
9	E	The ground wire of AC input
10	GND/PG	Protect ground

4U Rack Mount type

ltem	Name	Definition
1	DC(MODE)	Prefer to use the DC Voltage Input
2	AC(MODE)	Prefer to use the AC bypass Input
3	AC FAIL	AC Input is fault
4	DC fault	DC Input is fault
5	INV fault	Inverter is fault
6	COMM	The common return line of three signal
7	L	The live wire of AC input or AC output
8	Ν	The neutral wire of AC input or AC output
9	E	The ground wire of AC input
10	GND/PG	Protect ground

3.5. 3 WIRING DIAGRAM

Port name		Functional description	Remark		
DC Input +		Battery Input +	DC Module Input "+" Terminal		
DC Input -		Battery Input -	DC Module Input "-" Terminal		
AC Output L		AC Output L	Output Line Wire		
AC Output N		AC Output N	Output Neutral Wire		
	L	AC Input L	Input Line Wire		
AC Input	N	AC Input N	Input Neutral Wire		
	E	Earth	Earth Wire		
		City electricity fault	Two points are connected when it is failure		
Dry contac	t	DC Fault	Two points are connected when it is failure		
		Invert Fault	Two points are connected when it is failure		
Communication port		A	RS485A		
		B RS485B			
		G	GND		
DIP Switch		Mode selection	After the operation of the dialing switch		
		"1" mean AC for main input	It should be reboot the inverter after switch "DIP		

"0" mean DC for main input	switch", if not, it did not work
BO-B3 (2-5) address code range	Switch the DIP switch to the digital side is 1
from 00~15, The lowest address	Switch the DIP switch to the NO side is 0
code is 0 and highest address	(0000-1111)
code is 15	
It can set 15pcs address code	

<u>Noted</u>

- Connect the inverter with the Earth is necessary to make sure it can safety and normal operation of the inverter and reduce electromagnetic interference.
- The grounding wire must be grounded (GND) and the earth grounding terminal should be as close to the instrument as possible.

3.6 OPERATING

- 1. Switch on of the inverter (Recommend turn on the inverter switch first then switch the load)
- 2. Press the "**switch**" button, the inverter will have 1-5seconds of "**BEEP**" mean the inverter under **Self Test** and it has been started-up.
- 3. All Inverter start up with Self Test function, as before the inverter with stabilized output, it should be check whether the external environment and the inverter are normal. If the inverter and all status parameters of the utility power are normal, the inverter power supply will work stably in the utility power or inverter state. This process needs approximately 10 seconds
- 4. Switch off (Recommend turn on the Load switch first then switch the Inverter)
- 5. Press the "**switch**" button and turn off the inverter.

IV. MAINTENANCE AND AFTER-SALES

4.1.MAINTENANCE

- 1. In order to ensure continuous normal operation of the inverter, regular maintenance and maintenance are required.
- 2. The installation and storage of inverter should avoid high corrosive, high dust, high temperature and high humidity environments as much as possible.
- 3. Avoid metal material falling into the box.
- 4. Periodically check whether the connection line is aging and the cable connection point is tight and safe or not .
- 5. Clean the cooling fan regularly and check if the fan is normal.

4.2 ACCESSORIES

One user manual, one certificate of conformity, and one inspection report.

2 pieces of rack ears (not available in vertical chassis) and 3 * 8 pieces of countersunk screws (6-8 pieces).

A set of detachable transparent covers and other detachable terminals on the terminal.

The above accessories are usually placed in foam inside the cardboard box. Please pay attention.

	LIN	INV	BAT	Load	TEMP	Веер
AC Mains output	ON	OFF				
Inverter output	OFF	ON				
DC over-voltage			1s 1flash			1s 1 buzzer
DC lower voltage			3s 1flash			3s 1 buzzer

4.3 LED AND BUZZER COMBINATION STATUS TABLE

Overload 150%			ON		Without stopping buzzer
Overload 125~150%			1s 1flash		1s 1 buzzer
Overload 100~125%			3s 1flash		3s 1 buzzer
Over temperature		1s 1flash	1s 1flash	1s 1flash	1s 1 buzzer
Inverter failure		ON	ON	ON	Without stopping buzzer

Remark

- 1. Blank form indicates mean that it should be refer to related items
- 2. For example: "LINE" is ON, "INV" is OFF, "BAT" flashes for 1 second, "Load" goes off, and buzzer sounds for 1 second. IT means In the ac output state, DC input over voltage, normal load, no over temperature

4.4 FAULT ANALYSIS TABLE

- 1. When the inverter fails, the red signal indicator on the front panel will be "ON"
- 2. According to different fault conditions appear as long and alarm or flashing.
- **3.** You can determine the cause of the fault by looking at the indicators on the front panel and refer to the following figure for proper handling.

NO	Fault	Possible Reason	Solutions		
1	Battery, load, over temperature	Turn off the output due to internal	(1) Check the fan is running or not		
	LED, 1s 1 flash	overheating	(2) Check the air vents are blocked or not		
			(3) The environment temperature is too		
			high or not		
			(4) Reduce the load		
			(5) Wait 10 minutes for inverter cooling		
			and drop of the temperature then		
			restart		
2	The load LED Indicator ON and the	(6) Overload more than 150%	(1) Check whether running in overload		
	buzzer sounds	(7) Internal failure to shut down	(2) If yes, Reduce the load and restart		
		the inverter			
3	Battery LED Indicator ON. 3s1	Input DC voltage is too lower	Check the DC input voltage is too lower and		
	flash, buzzer 3s 1 sound		out of the range for the inverter		
			requirements		
4	Battery LED Indicator ON. 1s1	Input DC voltage is too higher	Check the DC input voltage is too higher and		
	flash, buzzer 1s 1 sound		out of the range for the inverter		
			requirements		
5	Load LED Indicator, 3 seconds 1	Overload 100~125%	(3) Check whether running in overload		
	flash, buzzer 3 seconds 1 sound		(4) If yes, Reduce the load and restart		
6	The LINE Indicator OFF after	AC Mains voltage and frequency	(5) Check if the AC mains voltage and		
	connect with AC City main Power	exceed the input limited range	frequency exceed the inverter input		
			range.		
			(6) Check whether the power switch on the		
			panel is switch on or not .		
7	Connect DC Power source for	(7) The input DC voltage does not	(9) Check if the DC input voltage is too		
	input, turn on the power switch	meet the requirements or is	lower can not meets the requirements		
	and the machine does not	too lower	(10) Check if input polarity is reversed.		
	respond	(8) The input polarity is reversed.			

8	Customer's DC input circuit	(11) Select the bigger capacity (13) Select the bigger capacity circui		
	breaker can not be switch and	circuit breaker breaker		
	close	(12) Inverter internal circuit failure (14) Switch on the DC circuit breaker ther		
		causes the machine to short Switch on the AC circuit breaker		
		circuit (15) If it still did not work mean the inverter		
		internal circuit are broken or short		
		circuit		
9	Can not switch the dc and bypass	(16) AC Mains voltage and (1) Check whether the ac mains voltage		
	in automatic	frequency exceed the Inverter and frequency exceed the input range		
		input limited range: of the inverter		
		(17) The dial switch (DIP Switch)on (2) Check whether the dial switch (DIF		
		the rear panel is set to the Switch) in corresponding position or		
		wrong position. not		
10	For other fault be happen, please contact with factory after sale service support team.			

V. WARRANTY

After the day of buying the equipment, non man-made failure, there is 1 year warranty

If there is failure please contact with the sellers

The following not included in the warranty:

- Man-made failure or out of guarantee period or disassemble the cabinet or cover of inverter without permission
- The failure or broken cause by Force Majeure or external reason
- Misapplication, accident, neglect, amendment or repair without permission
- Use goes beyond the limit
- Break the operation instruction

		Wa	arranty Card	
Product name			Product NO.	
Product model			Purchase time	
Remark :				
Purchase company				
Contact person			Telephone	
Distributor				
Maintain Record				
Date	Maintain type	Summery	Maintenance man signature	User signature